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1. Summary 
 
The mission of our group has been connecting the work on negotiation frameworks with 
the research on analytical and empirical computational complexity. The general goal has 
been to use our findings in both the design and operation of complex distributed systems, 
improving their expressiveness and scalability based on principled controlled hardness 
awareness. In particular, our goal was to study the impact of problem structure on the 
computational complexity of the problem, and to exploit this connection in both problem 
modeling and solving. 
 
At various stages of the project, our work has been dedicated to both: 
 

1. ANTS (short for Autonomous Negotiation Teams) Sensor Networks domain and 
negotiation protocols, and 

 
2. ANTS Autonomic Logistics domain. 

 
In both domains, our work has focused on identifying the domain’s structural features 
that most affect the complexity of the negotiation. Starting with the specification of the 
challenge problem, our work in Sensor Networks domain has been focused on: 

 
1. Generic research on accelerating Constraint Satisfaction Problem (CSP) problem 

solvers by analysis and exploiting problem’s structure. 
 
2. Formal specification of agents’ negotiation abilities, and the negotiation tasks. 

Abstracting the sensor network negotiation tasks as Distributed Constraint 
Satisfaction Problem (DCSP) and Constraint Optimization (COP). 

 
3. Developing fully-functional discrete-event simulator for simulating negotiation 

between sensor agents upon a realistically modeled network, and studying three-
side connections between (1) structural properties of the negotiation tasks; (2) 
network properties, and (3) relative advantage of various negotiation strategies. 

 
4. Comparative evaluation of several backtrack-style and local search negotiation 

strategies on various negotiation tasks. 
 

5. Formal complexity analysis of the negotiation problem in sensor networks, 
specifying the precise complexity hierarchy of the problem sub-classes as a 
function of different structural parameters of the problem. 

 
6. Analysis of practical scalability of the negotiation protocols by studying the form 

of their phase transition behavior, again, as a function of different structural 
parameters of the problem. 
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In the second part of the program, the effort of our group has been directed towards 
ANTs Autonomic Logistics domain. In Sensor Networks domain our focus was mainly 
on identifying scalable negotiating formations and hardness aware problem solving. In 
Autonomic Logistics domain we focused on exploiting problem structure right at the 
level of problem modeling. The conceptual idea was to exploit sophisticated knowledge 
representation techniques for compact and informative problem encoding. The results 
achieved by our group show that contribution of such sophisticated encodings can be 
two-fold. First, principle applicability of the given problem solvers can be extended to a 
wider range of negotiation tasks. Second, the performance of these problem solvers can 
be dramatically improved.  
 
Joining other contractors involved in Autonomic Logistics domain, and working closely 
with the ISI contractors, our work in Autonomic Logistics domain was focused on: 
 

1. Generic research on critical resources that form the core of combinatorics in hard 
real-world problem instances. Development and computational analysis of 
algorithms for discovering critical resources in the given problem instances. 

 
2. Study of the CAMERA (Coordination and Management Environments for 

Responsive Agents) tool modules, a real-time resource management architecture 
providing a basis for integrating technologies developed by the ISI (Information 
Sciences Institute) contractors. 

 
3. Analysis of the SNAP (Schedules Negotiated by Agent Planners) problem 

domain. SNAP is a specialized system for scheduling flight operations developed 
by the ISI contractors on top of the CAMERA tool, and used as the practical 
benchmark for Autonomic Logistics domain. 

 
4. Analysis of ATTEND (Analytic Tools to Evaluate Negotiation Difficulty) 

pseudo-boolean encoding (ISI) for CAMERA resource management problems, 
focusing on “lessons learnt” from the SNAP domain. 

 
5. Formal development of a pseudo-boolean extension Cornell-1 to the ATTEND 

encoding. Cornell-1 allowed CAMERA/SNAP to enable resource/task allocation 
by taking into account the dynamic properties of the resources. More formally, 
Cornell-1 enabled CAMERA to deal not only with “negotiation for scheduling”, 
but also “negotiation for planning” problem, raising significantly the expressivity 
of the system. 

 
6. Further extension of the pseudo-boolean encoding. The pseudo-boolean extension 

Cornell-2 enriched its predecessor by addressing resource abstraction due to 
changing resolution of the negotiation time scale. 

 
7. Implementation, testing, and performance evaluation of Cornell-2, followed by its 

deployment to the ISI contractors for successful integration with the CAMERA 
tool. 
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2.  ANTs Sensor Networks Domain and Negotiation Protocols 
 
Our principle approach to analyzing negotiation protocols for Sensor Networks domain 
has been based on intuitive reduction of this negotiation problem to the general problem 
of Distributed Constraint Satisfaction (or DisCSP, for short) [YH00]. The objective has 
been to adapt general purpose distributed negotiation protocols, and to analyze the 
complexity of the corresponding class of problems (which we call SensorDCSP) both 
analytically and empirically. The main goal has been to study practical scalability of 
various distributed negotiation strategies as a function of the qualitative structure of the 
problem. 
 
In a DisCSP problem, variables and constraints are distributed among the different 
autonomous agents that have to solve the problem. A DisCSP is defined as follows: (1) A 
finite set {A1, …,An} of agents;  (2) A set {P1, …,Pn} of local (private) CSPs, where CSP 
Pi pertains to agent Ai (and Ai is the only agent that can modify the values assigned to the 
variables of Pi); (3) A global CSP, each of whose variables is also a variable of one of the 
local CSPs.   
 
In the Sensor Network domain we have multiple sensors S = {s1, …,sm} and multiple 
mobile targets T = {t1, …,tn} (or mobiles, for short) which are to be tracked by the 
sensors. The goal is to allocate three sensors to track each mobile node, such that all these 
triplets of sensors are pair-wise disjoint and consistent with two sets of constraints: 
visibility constraints and compatibility constraints. Figure 1 shows an example with six 
sensors and two mobiles.  Each mobile has a set of sensors that can possibly detect it, as 
depicted by the bipartite visibility graph in Figure 1(a).  In addition, it is required that 
each mobile be assigned three sensors that satisfy a compatibility relation with each 
other; this compatibility relation is depicted by the graph in Figure 1(b). Finally, it is 
required that each sensor only track at most one mobile. A possible solution is depicted in 
Figure 1(c), where the set of three sensors assigned to each mobile is indicated by the 
lighter edges. 
 

 
                (a)                                               (b)                                             (c) 
 
Figure 1: A SensorDCSP problem instance: (a) Visibility graph; (b) Compatibility graph; (c) Feasible 

sensors/mobiles assignment. 
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Our DisCSP encoding of the Sensor Network problem is called SensorDCSP and is as 
follows: Each mobile is associated with a different agent. There are three different 
variables per agent, one for each sensor that we need to allocate to the corresponding 
mobile. The value domain of each variable is the set of sensors that can detect the 
corresponding mobile. The intra-agent constraint between the variables of one agent is 
that the three sensors assigned to the mobile must be distinct and pair-wise compatible. 
The inter-agent constraints between the variables of different agents are that a given 
sensor can be selected by at most one agent. In our implementation of the DisCSP 
algorithms, this encoding is translated to an equivalent formulation where we have three 
virtual agents for every real agent, each virtual agent handling a single variable. 
 
In our work we consider two probably most popular DisCSP algorithms, Asynchronous 
Backtracking (ABT) [YDIK92], and Asynchronous Weak-Commitment (AWC) [Yokoo95].  
We provide a brief overview of these algorithms. In what follows, the neighbors of a 
given agent are the agents with whom it shares constraints. 
 
ABT is a distributed asynchronous version of a classical backtracking negotiation 
algorithm. This algorithm needs a static agent ordering that determines an ordering of the 
variables of the problem. Agents use two kinds of messages for solving the problem, 
namely the nogood messages and ok messages. Agents initiate the negotiation by 
assigning an initial value to their variables. An agent changes its value when it detects 
that it is not consistent with the assignments of higher priority neighbors, and so it 
maintains an agent view, which consists of the variable assignments of its higher priority 
neighbors.  
 
Each time an agent assigns a value to its variable, it issues the ok message to inform its 
lower-priority neighbors of this new assignment.  If an agent is unable to find an 
assignment that is consistent with the assignments of all of its higher-priority neighbors, 
it sends a nogood message, which consists of a subset of that agent's view that makes it 
impossible for the agent to find a consistent assignment for itself;  the nogood message is 
sent to the lowest-priority agent among all the (higher-priority) agents in that particular 
subset of that agent's view. Receipt of a nogood message causes the receiver agent to 
record the content of that message as a new constraint and then try to find an assignment 
that is consistent with its higher-priority neighbors and with all of its recorded 
constraints. If the top-priority agent is forced to backtrack (which implies that its 
assignment is inconsistent with at least one of its recorded constraints, since there is no 
higher-priority neighbor with which its assignment could possibly clash), this means that 
the problem has no solution. If, on the other hand, the system reaches a state where all 
agents are happy with their current assignments (no nogood messages are generated), this 
means that the agents have found a solution. 
 
AWC can be seen as a modification of the ABT algorithm. The primary differences are as 
follows: A priority value is determined for each variable, and the priority value is 
communicated using the ok message. If an agent's current assignment is inconsistent with 
that agent's view, the agent selects a new consistent assignment that minimizes the 
number of constraint violations with lower-priority neighbors. When an agent cannot find 
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a consistent value and generates a new nogood, it sends the nogood message to all its 
neighbors and raises its priority by one unit above the maximal priority of its neighbors. 
Then it finds an assignment that is consistent with the assignments of its higher-priority 
neighbors and informs its neighbors by sending them ok messages. If no new nogood can 
be generated, the agent waits for the next message. 
 
 

2.1 Phase Transition and Complexity Profiles for SensorDCSP 
 
Our analytical analysis [BKGS01] showed that: 
 

1. SensorDCSP is NP-complete, since a known NP-complete problem of partitioning 
a graph into cliques of size three can be reduced to it.   

 
2. In limiting case in which every pair of sensors is compatible SensorDCSP is 

solvable in polynomial time as each such problem can be reduced to a feasible 
flow problem in a bipartite graph. 

 
For our experiments, we have defined a random distribution of instances of SensorDCSP, 
and developed a parameterized instance generator for this random distribution that 
generates DisCSP-encoded instances of the sensor network negotiation problem. An 
instance of this problem is generated from two different random graphs, the visibility 
graph and the compatibility graph. Apart from the number of mobiles and number of 
sensors, we also specify parameters controlling edge density of the visibility graph Pv and 
edge density of compatibility graph Pc. Each of these parameters specifies the 
independent probability of including a particular edge in the corresponding graph. As 
these two graphs model the resources available to solve the problem, Pv and Pc 
completely control the number of constraints in the generated instances. 
 
 
For the problem of negotiation in Sensor Networks, as well as in any other networked 
environment, it is important to factor in the physical characteristics of the distributed 
environment.  For example, the traffic patterns and packet-level behavior of networks can 
affect the order in which messages from different agents are delivered to each other, 
significantly impacting the distributed search process. To investigate these kinds of 
effects, we have developed an implementation of the algorithms ABT and AWC 
using the Communication Networks Class Library (CNCL). This library provides a 
discrete-event network simulation environment with a complete set of communication-
oriented classes. The network simulator allows us to realistically model the message-
delivery mechanisms of varied distributed communication environments ranging from 
wide-area computer networks to wireless sensor networks. 
 
In our experiments we considered different sets of instances with 3 mobiles and 15 
sensors.  Every set contained 19 instances and was generated with a different pair of 
values for the parameters Pc and Pv (ranging from 0.1 to 0.9), providing us with 81 data 
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points. Each instance has been executed 9 times, each time with a different random seed.  
The results reported in this section were obtained using a sequential value selection 
function for the different algorithms.  
 
The communication links used for communication between virtual agents of different real 
agents (inter-agent communication) are modeled as random-delay links, with a negative-
exponential distribution and a mean delay of 1 time unit. The communication links used 
by the virtual agents of the same real agent (intra-agent communication) are modeled as 
fixed delay links, with a delay of 10-3 time units. Here we use fixed-delay links because 
we assume that a set of virtual agents work inside a private computation node and this 
allows virtual agents to communicate with each other using dedicated communication 
links.  This scenario could correspond to a heavy-loaded network situation where inter-
agent delay fluctuations are due to the queuing process on intermediate systems.  The 
difference of a factor of 1000 between the two delays reflects that intra-agent 
computation is usually less expensive than inter-agent communication.  Later we will 
show how different delay-distribution models over the inter-agent communication links 
can impact the performance of the algorithms. 
 
 

 
 

Figure 2: Percentage of satisfiable instances depending on the density parameter for the visibility 
graph (Pv) and the density parameter for the compatibility graph (Pc). 

 
 
Figure 2 shows the ratio of satisfiable instances as a function of Pc and Pv. When both 
probabilities are low, most of the generated instances are unsatisfiable.  For high 
probabilities, however, most of the instances are satisfiable. The transition between the 
satisfiable and unsatisfiable regions occurs within a relatively narrow range of these 
control parameters, analogous to the phase transition in CSP problems. 
 
 
Also consistent with other CSP problems is our observation that the hardest instances for 
these backtracking algorithms generally occur in the region where the phase transition 
occurs. Figure 3 shows the mean solution time with respect to the parameters Pc and Pv: 
The hardest instances lie on the diagonal that defines the phase-transition zone, with a 
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peak for instances with a low Pc value. The dark and light solid lines overlaid on the 
mesh depict the location of the iso-lines for Psat = 0.2 and Psat = 0.8, respectively, as per 
the phase-transition surface of Figure 2. As mentioned earlier, the SensorDCSP problem 
is NP-complete only when not all sensors are pair-wise compatible (i.e., when Pc < 1). 
Therefore, the parameter Pc could separate regions of different mean computational 
complexity, as in other mixed P/NP-complete problems [MZKST99,Walsh02]. This is 
particularly noticeable in the mean-time distribution for AWC shown in Figure 3.  
 

 
 

Figure 3: Mean solution time with respect to Pc and Pv for ABT and AWC algorithms.  

 
We observe that the mean times to solve an instance with AWC appear to exceed those 
with ABT by an order of magnitude. At first glance, this is a surprising result, 
considering that the AWC algorithm is a refinement of ABT and that results reported for 
satisfiable instances in the literature point to better performance for AWC [YDIK98, 
YH00]. One plausible explanation for the discrepancy is the fact that our results deal with 
both satisfiable and unsatisfiable instances. On further investigation, we found that while 
AWC does indeed outperform ABT on satisfiable instances, it is much slower on 
unsatisfiable instances. This result seems consistent with the fact that the agent hierarchy 
on ABT is static, while for AWC the hierarchy changes during problem solving; 
consequently, AWC might be expected to take more time to inspect all the search space 
when unsatisfiable instances are considered.  
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Figure 4: Mean time to solve a hard satisfiable instance by ABT using restarts, plotted with different 

cutoff times. 

 
 

2.2 Randomization and Restart Strategies. 
 
As a part of our computational analysis we studied the effect of adding a restart strategy 
[GSK98] to ABT. The introduction of a randomized value selection function was directly 
assumed in its original formulation [YDIK98]. In extensive experiments we performed 
with our test instances, we found that the randomized selection function is indeed better 
than a sequential value selection. On the other side, randomization can result in greater 
variability in performance, and thus ABT should be equipped with a restart strategy. We 
have not defined a restart strategy for AWC, because the dynamic priority strategy of 
AWC can be viewed as a kind of built-in partial restart strategy. In the results reported in 
the rest of the paper, both ABT and AWC use randomized value selection functions. 
 
To study the benefits of the proposed restart strategy for ABT, we have used restarts in 
solving hard satisfiable instances with ABT. Figure 4 shows the mean time needed to 
solve a hard satisfiable instance, together with the corresponding 95% confidence 
intervals, for a number of cutoff times. We observe that there is clearly an optimal restart 
cutoff time that gives the best performance. As will be argued later, use of restart 
strategies is essential when dealing with the delays that occur in real communication 
networks, given the high variance in the solution time due to randomness of link delays in 
the communication network. 
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2.3 Active Delaying of Messages 
 
A novel way of randomizing the search in the context of DisCSP algorithms is to 
introduce forced delays in the delivery of messages. Delays introduce randomization 
because the order in which messages from different agents reach their destination agents 
determines the order in which the search space is traversed. More concretely, every time 
an agent has to send a message, it follows the following procedure: 
 
with probability p: 
   d = D ◊ (1+r) 
else (with probability (1-p)) 
   d = D 
 
Transmitting message m with delay D means that the agent requires its communication 
interface to add D seconds to the delivery time currently scheduled for m and all the 
successors of m in the message queue. The latter preserves the order of transmission and 
reception for the messages sent from one agent to another agent. The parameter r is the 
fraction of the communication delay (D) added by the agent.  
 
In this section we present the results of our experiments with the AWC and ABT 
algorithms, and active delaying of messages. The amount of delay added by the agents is 
a fraction r of the delay in the inter-agent communication links.  Here, we consider the 
case where all the inter-agent communication links have fixed delays of 1 time unit, 
because we want to isolate the effect of the delay added by the agents.  This is in contrast 
to the experiments described elsewhere in this section, where we report the effects of 
allowing variable inter-agent delays. 
 
 
 
 

 
 

Figure 5: Median time and number of messages needed to solve a hard satisfiable instance (point A in 
Figure 3) with AWC when agents add random delays in outgoing messages. The horizontal plane 

represents the median time (or the median number of messages) for the case where no delay is added 
(p = 0). 
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Figure 5 shows the results of using AWC to solve a hard satisfiable instance from our 
SensorDCSP domain (namely, the one that corresponds to point A in Figure 3).  The 
solution time and the number of messages are plotted for various values of p, the 
probability of adding a delay, and r, the fraction of delay added with respect to the delay 
of the link. The horizontal plane cutting the surface shows the median time needed by the 
algorithm when we consider no added random delays (p=0, r=0). We see that agents can 
indeed improve the performance of AWC by actively introducing additional, random 
delays when exchanging messages. The need to send messages during the search process 
is almost always reduced when agents add random delays; in the best case the number of 
messages delivered can be as much as a factor of 3 smaller than in the worst case. 
Perhaps more surprisingly, the solution time can also improve if the increase in delay (r) 
is not too high. 
 
Figure 6 shows the results with AWC (left) and ABT (right) for a hard satisfiable 
instance (namely, the one that corresponds to point B in Figure 3). We observe that the 
performance of AWC is improved in a greater number of cases than that of ABT.  
Moreover, in the best case the solution time is smaller than that in the worst case by a 
factor of 2.25 for AWC and 1.63 for ABT.  It appears that AWC benefits to a greater 
extent overall than ABT when it comes to the incorporation of delays added by agents. 
The reason for this could be the ability of AWC to exploit randomization via its 
inherently restarting search strategy. 
 
 
 

 
 

Figure 6: Median time for AWC and ABT to solve a hard satisfiable (point B in Figure 3) instance 
when agents add random delays in outgoing messages. The horizontal plane represents the median 

time for the case where no delay is added (p = 0).  

 



 11

2.4 The Effect of the Communication Network Data Load 
 
As described in the previous section, when working on a communication network with 
fixed delays, the performance of AWC can be improved, depending on the amount of 
random delay addition that the agents introduce into the message delivery system. In real 
networks, however, the conditions of data load present in the communication links used 
by the agents cannot always be modeled with fixed-delay links. It would thus seem 
worthwhile to determine how differences in communication network environments can 
affect the performance of the algorithms. In Section 2.3 we discussed inter-agent 
communication links with random, exponentially distributed delays. In this section we 
study the effect produced in the performance of DisCSP algorithms by considering delay 
distributions corresponding to different traffic conditions. To study how exponentially 
distributed delays affect the performance with respect to fixed delays, we can consider 
intermediate situations in which some of the inter-agent links have a fixed delay and the 
rest are exponentially distributed. 
 
Figure 7 shows how the median time and number of messages needed by AWC for 
solving a hard satisfiable instance with 4 mobiles and 15 sensors vary with the percentage 
of inter-agent communication links with a fixed delay. The rest of the inter-agent 
communication links are assumed to have random, exponentially distributed delays. The 
performance of AWC is worst when 100% of the links have a fixed delay, indicating that 
the conditions of the network affect the performance of the algorithm. An element of 
randomness in the delay distributions clearly improves the performance of AWC. In 
addition, observe that there is a fairly good correlation between the number of messages 
and the time needed, which suggests that an increase or decrease in the solution time is 
mainly due to a change in the number of messages exchanged. 
 
 

 
 

Figure 7: Median time and number of messages needed to solve a hard satisfiable instance  with 
AWC  depending on the percentage of fixed-delay inter-agent communication links. 
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Figure 8: Cumulative Density Functions (CDF) of the time needed to solve hard instances for their 
respective algorithms,  AWC, ABT and ABT with restarts under different link delay models. 

 
 
We now examine various link-delay distributions that can be used to model 
communication network traffic. Because of their attractive theoretical properties, 
negative-exponential distributions of arrival times have traditionally been used to model 
data traffic. It has been shown, however, that although these models are able to capture 
single-user-session properties, they are not suitable for modeling aggregate data links in 
local or wide-area network scenarios [CB97,LLWW94, Paxson97]. In view of this, we 
have simulated network delays according to three different models for the inter-arrival 
time distribution: the aforementioned negative-exponential distribution, the log-normal 
distribution, and the Fractional Gaussian Noise (FGN) distribution [ST94]. 
 
The log-normal distribution can be used to obtain distributions with any desired variance, 
whereas FGN processes are able to capture crucial characteristics of the Internet traffic, 
such as long-range dependence and self-similarity that do not lend themselves to other 
models. We synthesize FGN from a-stable distributions with typical parameter values of 
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H=0.75 and d=0.4. Figure 9 shows the Cumulative Density Functions (CDF) of the time 
required for three algorithms (AWC, ABT, and ABT with restarts) to solve hard instances 
when all the inter-agent communication links have delays modeled as fixed, negative 
exponential, and log-normal. The means were nearly identical, but the variances were 
quite different. Table 1 presents the estimated mean and variance of the number of 
messages exchanged when using each of the three aforementioned algorithms, together 
with several different inter-agent link-delay distributions, to solve the same hard instance. 
The estimated mean and variance of the solution time for the same scenarios are given in 
Table 2. The results in Figure 9 and Tables 1 and 2 show that the delay distributions have 
an algorithm-specific impact on the performance of both AWC and basic ABT. 
 

 
Table 1: Estimated mean and variance, from the empirical distributions, of the number of messages 
for different algorithms and different inter-agent link delay models when solving a hard satisfiable 

instance. 

 
Table 2: Estimated mean and variance, from the empirical distributions, of the solution time for 
different algorithms and different inter-agent link delay models when solving a hard satisfiable 

instance. 

 
For the basic ABT, the solution time on hard instances becomes worse when channel 
delays are modeled by random distributions as opposed to the fixed delay case. The 
greater the variance of the link delay, the worse ABT performs. However, introducing the 
restart strategy has the desirable effect of improving the performance of ABT. 
Furthermore, ABT with restarts is fairly robust and insensitive to the variance in the link 
delays.  AWC behaves differently from the basic ABT.  On hard instances, having 
randomization in the link delays improves the solution time compared to the fixed delay 
channel.  Likewise, the mean solution time for AWC is extremely robust to the variance 
in communication link delays, although the variance of solution time is slightly affected 
by this. In general, we found that on satisfiable instances, AWC always performs 
significantly better than both basic and restarts-enhanced ABTs. Therefore, AWC appears 
to be a better candidate in situations where most instances are likely to be satisfiable, and 
where we cannot avoid random delays in the links. 
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2.5 Modeling Spatial Structure of the Sensor Networks 
Our analysis of Sensor Network problems provides us with the first results on behavior of 
distributed CSP algorithms in real-world distributed applications. Observe that the very 
concrete specification of the SensorDCSP problem helps us both to analyze its 
computational complexity, and to establish coherent experiments for empirical analysis.  
However, getting closer to the real-world tracking systems, one may have to further 
specify the properties of the domain. The main information that we believe should be 
captured in analysis of various tracking systems is the spatial properties of both 
communication between the sensors and visibility of the mobiles.  Two reasons make 
capturing this information essential: 
 

1. Given spatial limitations for both communication between the sensors and 
visibility of the mobiles, the complexity analysis for general SensorDCSP 
provides only upper bounds on the complexity of any spatially-limited 
SensorDCSP.  In addition, deriving conclusions on various sub-classes of 
spatially-limited SensorDCSP from the empirical results on general SensorDCSP 
is not straightforward whatsoever. In particular, this makes it hard to analyze 
scalability of the negotiation algorithms with respect to real-life tracking systems. 

 
2. The overall goal of any tracking system is to track a set of moving objects, and 

this set is not necessarily constant over time (e.g., some tracked objects run out of 
the region covered by the sensors, while some new objects are getting into this 
region). Performance analysis of such a dynamic system is impossible without   
some realistic assumptions about the dynamics of the moving objects, which in 
turn can be specified only with respect to some concrete spatial model of 
SensorDCSP. 

 
In addition, spatial nature of the problem instances is likely to lead to inherently 
decomposable problems, making adopting the general-purpose DisCSP-based negotiation 
protocols even more attractive.  Influenced by the above motivation and the properties of 
a recently studied challenge problem for distributed tracking systems, we introduce a 
grid-based SensorDCSP problem (or GridDCSP, for short), and perform both analytical 
analysis of this problem and empirical study of DisCSP algorithms on both static and 
dynamic settings of this problem [Grid04]. 
 
The spatial model of the sensor network distributed negotiation in GridDCSP inherits the 
core properties of the UMass and our test beds: As before, we have multiple sensors, 
multiple targets which are to be tracked by the sensors subject to visibility and 
compatibility constraints, and the goal of the negotiation between agents associated 
controlling the sensors is to allocate three sensors to track each target, while keeping 
these triplets of sensors pair-wise disjoint.  However, now the visibility and compatibility 
constraints have a close relationship with the physical limitations of the sensors and the 
properties of the terrain on which the sensors are located.  
 
In GridDCSP, the sensors are located on the nodes of a uniform grid. This assumption 
makes analysis of the problem more coherent, while no generality is lost as some sensors 
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can be inactive, leading to an arbitrary set of active sensor locations. The targets are 
located within the surface enclosed by the grid; this way the grid specifies the generally 
trackable region.  
 

 
Figure 9: k-compatibility and k-visibility windows. 

 

 
Figure 10: Locality of communication and visibility. 

 
The physical limitations of the sensors are modeled by the notions of kc-compatibility and 
kv-visibility. The kc-compatibility window for a sensor s corresponds to the set of all 
sensors that are at most kc general (rectilinear and/or diagonal) hops from s. Similarly, the 
kv-visibility window for a target t corresponds to the set of all sensors that are at most k 
general hops around t. For example, the black sensors in Figures 9(a) and 9(b) correspond 
to 1-compatibility and 2-compatibility windows for the gray sensor, while the black 
sensors in Figures 9(c) and 9(d) correspond to 1-visibility and 2-visibility windows for 
the rectangular sensor, respectively. The compatibility of an GridDCSP-based sensor 
network is called kc-restricted if each sensor can communicate only with some sensors 
within its kc-compatibility window. The notion of kv-restricted visibility is defined 
similarly. For example, thinking of the gray sensor in Figures 10(a) and 10(b) as the only 
sensor, the compatibility graphs corresponding to Figure 10(a) and 10(b) are 2-restricted. 
Similarly, thinking of the rectangular mobile in Figures 10(c) and 10(d) as the only 
mobile, the visibility graphs corresponding to Figure 10(c) and 10(d) are 2-restricted. It is 
easy to see that higher values of k for both compatibility and visibility correspond to 
more powerful sensors. 
 
While the physical limitations of the sensors in GridDCSP are modeled via the locality 
windows, the terrain limitations are modeled via incomplete compatibility and visibility 
within the windows. This part of modeling is very similar to our modeling of 
SensorDCSP: Within a particular class of locality (kc, kv), representing problems with kc-
restricted compatibility graphs and kv-restricted visibility graphs, the problems can be 
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ordered according to the local constrainedness, i.e., the expected number of sensors that a 
sensor can communicate with and the expected number of sensors that can track a target.  
 
For our experiments, a random distribution of GridDCSP problem instances for a 
particular pair of locality parameters (kc, kv) is defined as follows.  An instance of the 
problem is generated from two different random graphs, the visibility graph and the 
communication graph.  Apart of setting the number of targets and number of sensors, we 
also specify the parameters Pc, Pv ∈ (0,1] that control the edge density of visibility and 
communication graphs, respectively.  These parameters specify the independent 
probability of including a particular edge in the corresponding graph. However, in 
GridDCSP these parameters have only local effect: For every pair of sensors s and s’, the 
probability Pr(s,s’) for the edge (s,s’) to be a part of the communication graph is given 
by: 
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Similarly, for the visibility graph, we define: 
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Intuitively, higher values for Pc and Pv correspond to less problematic terrain conditions 
for communication and tracking, respectively.  
 
To conclude, each sensor network problem instance in GridDCSP can be characterized 
by the following parameters: 
 

• Order of the problem, characterized by both the number of sensors and the 
number of targets. 

 
• Level of decomposition, modeled via the locality of compatibility and visibility, 

using the corresponding notions of window restrictness (kc, and kv), and 
 

• Level of constrainedness, modeled via the expected fraction of sensors that can 
communicate with a sensor and the expected fraction of sensors that can track a 
target, out of the maximally possible such numbers specified by the level of 
decomposition.  These aspects of the problem instances are modeled using the 
uniform probability distributions Pc and Pv with their corresponding means. 
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2.6 Complexity Analysis for SensorDCSP 
 
After specifying our spatially restricted model for sensor networks, our analysis took 
several directions: 
 

1. Worst-case analytical complexity analysis of the GridDCSP sensor network 
problems, with respect to the parameters described above. 

 
2. Average-case empirical complexity analysis of various distributed negotiation 

protocols with respect to the above parameters and the results obtained for (1). 
 
3. Modification of the previous negotiation algorithms in order to deal with the 

dynamic characteristics of the problem, and computational analysis of alternative 
approaches to deal with continuously changing set of moving targets. 

 
First, we have showed analytically that the general GridDCSP-based sensor network 
problem is NP-complete, thus in worst-case sense it is not easer than its non-spatial 
original version. In fact, we showed that GridDCSP is NP-complete even for the case of 
2-visibility. We identified, however, several tractable special cases of the problem. First, 
we defined the notion of locally complete compatibility graphs, and showed that any 
problem with such compatibility graphs is solvable in low polynomial time. Informally, 
the compatibility graph is locally complete if any pair of sensors that are able to track 
some target can communicate one with another. Second, we have showed that any 
problem with 1-restricted visibility is solvable in low polynomial time.  
 
In the first experiment we considered the AWC protocol on different sets of instances 
with 25 sensors (grid 5 x 5) and 5 mobiles, with every set generated with different values 
for the parameters Pc and Pv with respect to Eqs. (1.1) and (1.2). The parameters Pc and 
Pv range from 0.1 to 1 with an increment of 0.1, giving a total number of 100 data sets, 
where every set contains 50 instances. Given our analytical complexity results, we 
consider three hard subclasses of GridDCSP, corresponding to kv = 2 and kc Œ {1,2,3}. 
Figure 11(a) shows the percentage of  satisfiable instances as a function of Pc and Pv  for 
kc = 1,2 and kv = 2. As in the case of general SensorDCSP, when both probabilities are 
low, the instances generated are mostly unsatisfiable, while for high probabilities most of 
the instances are satisfiable. Both for kc = 1 and kc = 2, the transition between the 
satisfiable and unsatisfiable regions occurs within a narrow range of the density 
parameters. Observe that, for kc = 1 this range corresponds to significantly higher values 
of Pc and Pv , comparatively to these for kc = 2. However, the form of the transition for 
various values of kc  is very similar (see Figure 11(b)), showing a similar phase transition 
behavior for various subclasses of the GSensorDCSP problem with kv = 2. 
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(a) (b) 
 

Figure 11: Percentage of satisfiable instances depending on density parameters for the visibility 
graph (Pv) and the compatibility graph (Pc): (a) Plot for different values of Pc and Pv ; (b) Plot for 

equal Pc and Pv. 

 

 
Figure 12: Mean solution time with respect to Pc and Pv for the AWC on instances with 25 sensors, 5 

mobiles, kc = 1 and kv = 2. 

 
Consistently with the general SensorDCSP, we observe that the phase transition coincides 
with the region where the hardest instances occur.  For instance, Figure 12 shows the 
mean solution time with respect to the density parameters Pc and Pv for the problem 
instances with 25 sensors, 5 mobiles, kc = 1 and kv = 2. Somewhat less expected result is 
depicted in Figure 13 for the case of kv = 1 (and kc = 1). Recall that  we analytically 
proved this problem class to be polynomial. The actual proof is by a reduction to the 
problem of feasible integral flow in bipartite graphs. Despite the fact that AWC has no 
explicit connection with the algorithms for the latter problem, Figure 13(b) shows that 
these instances are easy for AWC as well. 
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   (a)          (b) 
 

Figure 13: (a)  Percentage of satisfiable instances and (b) Mean solution time for the AWC on 
(polynomial) instances with 25 sensors,  5 mobiles, kc = 1 and kv = 2. 

 
For the second experiment with the AWC algorithm, we consider different sets of 
instances for several orders of the problem (size of the grid), and several levels of 
decomposition (visibility and compatibility limitations).  In particular, we consider grids 
of 25, 36, 49, 64, 81, and 100 sensors (N = 5, 6, 7, 8, 9, 10), tracking 5, 7, 9, 12, 15 and 
18 mobiles, respectively, giving us an approximately constant ratio between the number 
of mobiles and the number of sensors for each case.  Note that N = 10 was the largest 
problem size we were able to deal with using the CNCL (Communication Networks 
Class Library) simulator [JBP96].  The constrainedness of visibility and compatibility 
graphs is kept equal (kc = kv  = k), and different sets correspond to k equal 2, 3, 4, and 5.  
Each set of problem instances corresponding to a particular pair of values (N, k) contains 
30 instances. The important point is that all the problem instances, in all the sets (N, k), 
have been  selected from the corresponding phase transition regions with respect to the 
density parameters Pc and Pv, representing the regions of the hardest problem instances 
(as it was shown in Figures 11(a) and 12. (The phase transition regions for every pair (N, 
k) have been determined in advance.) 
 
The mean solution time for satisfiable instances in this experiment is plotted in Figure 14 
as a function of N, where Figures 14(a), (b) and (c) depict this graphs in logarithmic scale 
for the problem instances with k = 2,3, k = 3,4, and k = 4,5, respectively, while Figure 
14(d) presents the whole picture in the linear scale.  We observe that the problem 
scalability with N degrades dramatically as k increases, but it can be considered as 
reasonable for k = 2 and k = 3.  In order to capture the exponential behavior of AWC on 
these problems, Figures 14(a-c) depicts the obtained measures, showing 95% confidence 
interval of the samples in logarithmic scale, as well as their corresponding linear 
regression plots. These plots have been represented in three different interrelated pictures 
in order to facilitate a pair-wise comparison.  
 
Two conclusions can be drawn from Figure 14. First, it is easy to see that the slopes of 
the regression lines increase with k.  For our set of results, the obtained slopes are 
0.03, 0.202, 0.213 and 0.293 for k = {2,3,4,5}, respectively. Second, the exponential 
dependence of the mean solution time on N seems to fit well according to the 
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experiments. In particular, the obtained mean square error of the regressions is 0.039 
0.04, 0.002, and 0.11 for k equal to 2, 3, 4 and 5, respectively.  
 
 

 
Figure 14: Mean solution time with respect to the order of the problem (size of the grid) for AWC on 

problem instances from the phase transition regions for kc = kv  = 2,3,4,5. 

 
 

2.7 Negotiation Techniques for Dynamic Systems 
 
Considering the scalability of generic distributed negotiation protocols, our main concern 
was about feasibility of striving to optimize in problems with real-life sensor/targets 
settings, where time deadlines play a crucial role, and the targets being tracked are 
moving.  More formally, the task of a tracking system can be specified as a dynamic 
GridDCSP-based problem, consisting of an ordered sequence of regular (static) 
GridDCSP-based problems, which are: 
 

• Defined over the same set of sensors and having the same compatibility graph, 
• Possibly differ in their sets of mobile targets (and thus obviously in their visibility 

graphs), and  
• Each problem instance should be solved within a certain time window. 
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Attempting to address this problem, we conducted a simulation with 100 sensors that 
were supposed to track over time a continuously changing set of moving targets.  The 
parameters used in this experiment have been chosen to represent a network of radars 
controlling some part of the airspace.  As written, we considered a 10 × 10 uniform grid 
of sensors, with the distance of 10 miles between any two adjacent sensors, while the 
tracking area covered by these sensors is defined by the square of 8,100 square miles 
enclosed by the grid. The compatibility graph and the visibility graphs for all the static 
sub-problems were constructed to be 4-restricted  (kv =  kc = 4). 
 

 
Figure 15: Graphical representation of the dynamic model, showing both the sensor grid, and the 
extended area in which the mobiles are moving and from the borders of which the movement is 

reflecting. 

 
The targets in the simulation were moving in the grid according to independently chosen 
linear trajectories, where the velocity of all the targets was Mach 2 (1,500 miles/hour). 
Our intention was to keep a controlled, relatively tight ratio between the number of 
targets and the number of sensors, thus we strived to keep the (now expected) number of 
18 targets inside the grid. On the other hand, we wanted to model both targets leaving the 
grid, and targets entering the grid, while keeping the movement of the targets 
independent of one another.  To achieve this, we extended the number of targets to 36, 
setting these targets to move in (randomly initialized) linear trajectories inside an area 
larger than our sensor grid. This area has been modeled by a square of 16,200 square 
miles (twice as big as the square defined by the grid), and the center of this extended area 
is exactly the center of the grid (see Figure 15). For the first static sub-problem in the 
sequence, each target is located at a randomly chosen point inside this extended area, and 
is annotated with a randomly chosen linear trajectory, that determines the position of this 
sensor for the next sub-problem and so on. If, at some point, a target reaches the border of 
the extended area, it reflects from the border at a randomly chosen angle, which 
determines a new linear trajectory for this target. Such modeling of the target dynamics 
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provides us with a continuously changing set of targets inside the grid, while the expected 
size of this set is known (and is 18 targets in our experiment). The time window available 
to solve each sub-problem has been set to 1.2 seconds, i.e. the minimum time spent by a 
target inside a cell of the grid (given a speed of Mach 2) provides us at least 20 snapshots 
of a target during its presence in a particular cell.  
 

 
 

Figure 16: Dynamics of two problems, located at 70% and 50% of satisfiability ratio:  (a) and (c) 
show the cumulative probability distributions for the solution repairing and the naive solving 

approach; (b) and (d) plot time differences to solve between the two approaches. 

 
 
Figure 16 depicts the results for two dynamic GSensorDCSP problems P1 and P2, each 
consists of 100 static GSensorDCSP sub-problems, where the subproblems for P1 (Figure 
16(a-b)) and P2 (Figure 16(c-d)) were selected from the regions of Psat ª 0.7 (Pv =  Pc = 
0.47) and Psat ª 0.5 (Pv =  Pc = 0.45), respectively.  Psat ª 0.5 corresponds to the region of 
the hardest instances. The dashed lines in Figures 16(a,c) depict the cumulative 
probability distributions of solving Pi within a time window of t seconds. In P1, all the 
solvable sub-problems were solved in less than 0.9 seconds, while in P2 all except one 
sub-problems were solved within the time limit of 1.2 seconds. 
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Observe that, if no assumptions can be made about the connection between the mobiles in 
two subsequent sub-problems of Pi, there is no particular reason to treat the sub-
problems of Pi differently than just solving them one by one independently, using one of 
the DisCSP algorithms. In what follows, we refer to this approach as to naïve solving of 
dynamic GridDCSP problems, and the results depicted by the dashed lines in Figures 
16(a,c) correspond to this straightforward approach. However, mobile dynamics are 
typically far from being chaotic (linear trajectories in our experiment), i.e. the changes 
between the subsequent sub-problems are governed by some clear model of mobile 
dynamics.  For instance, consider a network of radars controlling some airspace region. 
In such an application, it is reasonable to assume that if an aircraft becomes trackable by 
a sensor, then this aircraft is likely to remain trackable by this sensor in some near future. 
 
One of our hypotheses was that continuity of the mobiles movement can be exploited in 
improving the performance of the tracking systems. An approach that a priori seems to be 
promising for dealing with such a problem P = {p1, …, pn} is to initialize the search for 
pi, 1 < i £ n, by the solution already achieved for pi-1 (comparatively to starting from an 
random assignment in AWC used in the naive approach). In what follows, we refer to this 
approach as to solution repairing. Note that in this approach, nogoods are not kept and 
are removed once a solution is obtained, so no additional synchronization is required 
between agents. 
 
The central question is whether the contribution of solution repairing (versus the naive 
approach) is expected to be significant in real-life settings of both the mobiles dynamics, 
and the time available to solve each one of the static sub-problems. One experiment 
provides positive evidence to this question: The solid lines in Figures 16(a-c) depict the 
cumulative probability distributions of solving Pi within a time window of t seconds 
using the solution repairing approach.  It is easy to see that solution repairing clearly 
outperforms the naive approach, and Figures 16(b-d) illustrate this even better: For each 
sub-problem pi, these graphs plot the difference between the times required to solve pi 
using AWC from scratch and starting from the solution for pi-1, if this exists (Dt). More 
interestingly, the results of our experiment show that the relative attractiveness of 
solution repairing is higher in the region of harder instances. For instance, using solution 
repairing, all the sub-problems of P2 were solved in less than 0.75 second. The reason 
could be that small changes in the problem setting (as the changes between pi and pi+1 are 
expected to be) usually will not change significantly the placement of the solutions in the 
search tree. If so, then adopting solution repairing is likely to initialize the search at a 
node that is close to a solution node in the search tree. Likewise, the contribution of this 
property is likely to be more significant for sequences of harder problems, i.e. problems 
that a priori have less alternative solutions. 
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3.  ANTS Autonomic Logistics - Resource Enabling in CAMERA 
 
The CAMERA tool, developed by the ISI contractors in the scope of the autonomic 
logistics ANTS project, is a real-time resource management architecture providing a basis 
for integrating technologies developed by other contractors in the project. The general 
problem addressed by CAMERA is this of scheduling a set of tasks, conflicting 
requirements of which demand for various resources essential to fulfill the tasks. The 
resources can be of various types and nature (e.g. consumable vs. usable, mutually 
exclusive vs. sharable, etc.), and the tasks can have complex requirements involving 
various types of resources. The practical benchmark problem that has been used for 
development and testing for performance various components of the system is this of 
scheduling flight operations of a combat squadron and/or a set of squadrons. This 
specialized system, called SNAP, has been developed on top of the CAMERA generic 
tool. In terms of this domain, the tasks represent numerous flight missions and the 
resources stand for pilots, fuel, available time windows, etc. 
 
The CAMERA tool integrates several alternative solutions for dealing with the core 
problem, and one of these solutions is based on: 
 

1. Encoding the problem using a Pseudo-Boolean (PB) encoding (performed by  
the CAMERA sub-tool ATTEND, developed by A. Bugacov from ISI), 

 
2. Solving the generated pseudo-boolean problem (PBP, for short) using an off-the-

shelf PB solver, or a specialized solver developed by the CIRL project 
contractors. (While the behavior of different solvers is expected to vary on 
various PBPs, the actual encoding is solver-independent). 

 
These two stages of the PBP-based solution are depicted (in the framework of 
CAMERA) in Figure 17 by the blue and purple frames, respectively. 
 
While the ATTEND encoding addresses the core parts of safe, feasible scheduling and 
resource allocation between the tasks, the PBP generated by ATTEND is more 
constrained than the original problem (OP, for short). In this sense, any solution for the 
generated PBP is a solution for OP, but not vice versa, and thus some of the potentially 
valuable solutions for OP are sacrificed from the beginning. Below we describe the 
reasons for such a difference between PBP generated by ATTEND and the original 
problem that is provided to CAMERA.  
 
Bridging this gap between the original problem and its pseudo-boolean encoding has 
been defined to be of highest interest of the SNAP/CAMERA users, and thus this problem 
was of our main focus.  
 



 25

 
Figure 17: CAMERA/ATTEND architecture. 

 
 

3.1 Resource Enabling – Formal Problem Statement 
 
As we already mentioned, the flight tasks provided to SNAP have several requirements 
that require pilots as their main resources. Unlike other resources, not every pilot can be 
assigned to a requirement of a given task, but only pilots that fulfill essential skills. These 
essential skills are a static property of the task requirements and they are drawn from a 
static set of different skills 1Q { , , }mQ Q= … . More specifically, the essential skills of a 
task T  (in what follows, by task we mean a requirement of a task) is a (possibly empty) 
set (T)Pre  which is an subset of Q , representing a set of skills that a pilot should have in 
order to be counted as qualified for the task T .  
 
In turn, in order to reason about pilots’ qualifications, each pilot X  is annotated with a 
(similarly defined) set (X) Q⊆Have describing the qualification history of X . In the 
SNAP flight operations scheduling problem, no pilot can be assigned to a task without 
having the skills required by the task. More formally, a pilot X can be assigned to a task 
T if and only if (T) (X)⊆Pre Have . 
 
The crucial part of the flight operations scheduling problem is that the tasks performed by 
the pilots provide them with additional qualifications. Note that the generalization of this 
property is not unique to SNAP, but appears in many real-life scheduling problems (e.g., 
long-term students/courses allocation). More specifically, each task T  is associated with 
a (possibly empty) set of skills (T) Q⊆Provides , such that if a pilot X  is assigned to 
perform T , then after performing T the qualification history of X  is updated as follows: 
 

(X) : (X) (T)= ∪Pre Pre Provides  
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The ATTEND PB encoder was taking into account only the qualification history of the 
pilots that exists prior to the scheduled set of tasks. Therefore, the pseudo-boolean 
satisfability problem generated by ATTEND ignored the skills that can be dynamically 
obtained by the pilots as a result of participating in tasks to which they are getting 
assigned.  
 
Our group worked on overcoming the above limitation by taking advantage of the skills 
dynamically obtained by the pilots within the scheduled set of tasks. This extension turns 
out to be extremely non-trivial as it extends the general CAMERA/SNAP problem from 
the scheduling to a mixed scheduling & planning [ST94]. In addition, for several 
software legacy and research reasons, we have attempted to overcome the above 
limitation of CAMERA without affecting the framework of ATTEND pseudo-boolean 
encoding. 
 

3.2 Resource Enabling via Extended Pseudo-Boolean Encoding 
 
The resource enabling pseudo-boolean encoding that we have developed properly 
extends the ATTEND encoding currently used in CAMERA. Below we list the central 
axioms of our extension, omitting several technical details that ease the presentation. 
 
First, let us introduce the variables used in the encoding. and for each skill QQ∈ : 
 

Variable Semantics 
 

 
,i kX  

 

For each qualifiable resource X (i.e., pilot in case of SNAP), for each task 
iT  and for each time slot k, the variable ,i kX  represents assigning X to iT  

at time slot k. Note that the variables ,i kX  are already used by the current 
ATTEND pseudo-boolean encoding. 

 
 

,
k

X Q  
 

 
For each qualifiable resource X, for each skill Q , and for each time slot k, 
the variable ,

k
X Q  encodes the proposition that at the time slot k, X has 

the skill Q in his qualification history.  
 
Our first axiom conditions assignment of resources to tasks on the skills that are required 
by the latter. More formally, for each task iT , for each resource X, and for each time slot 
k, we have: 
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( )
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i

i kk
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X Q X
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→∪
Pre

 



 27

encoded 1 as: 
 
  

 ,
( )

,
i

i i k ik
Q T

X X Qα α
∈

+ ≥∑
Pre

 (1.3) 

 
where ( )i iTα = Pre . Informally, Eq. 1.3 encodes an intuitive axiom that if X does not 
have the skills essential to perform iT , then X should not be assigned to iT . 
 
The subsequent two axioms correspond to the planning part of the problem, and in 
particular they embed the planning “frame axioms”. The first planning axiom is that for 
each resource X, for each skill Q, and for each time slot k, we have: 
 

 , 1
( )

, ,
i

i kk k
T Q

X Q X X Q
+

∈

∨ →∪
Provide

 

 
where ( )QProvide stands for the set of all tasks T such that ( )Q T∈Provides . This 
axiom is encoded as: 
 

 ,1
( )

, ,
i

Q i k Qk k
T Q

X Q X Q Xβ β
+

∈

+ + ≥∑
Provide

 (1.4) 

 
where ( ) 1Q Qβ = +Provide . Informally, this axiom states that “if you already have a 
certain skill, or now you are doing something that provides this skill, then at the next time 
slot you will have this skill”. 
 
The second planning axiom accomplishes the first planning axiom, and it states that for 
each resource X, for each skill Q, and for each time slot k, we have: 
 

 , 1
( )

, ,
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i kk k
T Q

X Q X X Q
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∧ →∩
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encoded as: 
 

 ,1
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, , 1
i

i kk k
T Q

X Q X Q X
+

∈

+ + ≥∑
Provide

 (1.5) 

                              
1 In what follows, by ∪ or ∨ , and by ∩ or ∧ , we denote disjunction and conjunction, respectively. 
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Informally, this axiom states that “if you don’t have a certain skill, and you are not doing 
something that will provide you this skill, then at the next time slot you still will not have 
this skill”. 
 
Together with some additional technical details, this set of axioms (added to the current 
system of ATTEND’s pseudo-boolean constraints) provides necessary and sufficient 
conditions for correct resource enabling within the CAMERA tool and the SNAP system. 
 
 

3.3 Extended Pseudo-Boolean Encoding with Changing Time 
Resolution 

 
Above we described the model of pilot qualifications, allowing the pilots to perform these 
tasks. The flight tasks provided to SNAP have several requirements that in 
particular require pilots as their main resources. Unlike other resources, not every pilot 
can be assigned to a requirement of a given task, but only pilots that fulfill some essential 
skills. Prior to having extended encoding E1 described in Section 3.2, the ATTEND PB 
encoder took into account only the qualification history of the pilots that exists prior to 
the scheduled set of tasks. Overcoming the above limitation by taking advantage of the 
skills dynamically obtained by the pilots within the scheduled set of the tasks has been 
addressed within the extended encoding E1. Here we extend this encoding to deal with 
changing time resolution, and henceforth this enhanced encoding is denoted E2. 
 
The problem of a deep time horizon is solved in ATTEND via abstraction of the time 
resolution. Before the abstraction, for each time slot and for each pilot, we have 
information whether this pilot is available within this time slot. As a result of time 
abstraction, the availability of a pilot within a certain time slot can be replicated, 
schematically resulting in having several instances of the same pilot within a particular 
time slot. The problematic aspect of this problem representation is that: 
 

1. From the scheduling point of view, each pilot instance is treated as an 
independent pilot, but 

 
2. From the resource enabling point of view, all the instances of the same pilot 

should be treated as the same pilot (i.e. skills obtained by one pilot instance 
should be propagated to all other instances). 

 
Because of this asymmetry, the naive approach of using the extended encoding E1 at the 
level of pilot instances (instead of at the level of pilots) is incomplete, and the quality of 
the solutions provided by this approach is expected to be extremely low. Therefore, we 
have developed a new formal model for resource enabling (E2) that successfully deals 
with anytime abstraction. Likewise, for several software legacy and research reasons, E2 
has no affect on the framework of ATTEND pseudo-boolean encoding, leaving the latter 
completely resource enabling independent. 
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Below we list the central axioms of the E2 resource enabling model, leaving out several 
technical details to ease the presentation. 
 
First, let us introduce the variables used in the encoding. The main difference here 
comparatively to E1 is the variables ( )

,
j

i kX , corresponding to the instance of the pilots. 
Formally, for each pilot X and for each skill QQ∈ : 
 

Variable Semantics 
 

iT  Task fulfillment variable: true if iT  is successfully scheduled and false 
otherwise. 

 
( )
,
j

i kX  
 

 
For each qualifiable resource X (i.e., pilot in case of SNAP), for each task 

iT , for each time slot k, and for each instance j of X available in time slot 
k, the variable ( )

,
j

i kX  represents assigning the instance j of X to iT  at time 
slot k.  

 
 

,
k

X Q  
 

 
For each qualifiable resource X, for each skill Q , and for each time slot k, 
the variable ,

k
X Q  encodes the proposition that at the time slot k, X has 

the skill Q in his qualification history.  
 
Now, let us introduce the axioms forming the formal model of E2, together with pseudo-
boolean realization of those axioms. Note that the principles behind the ideas of the E2 
axioms bare some similarity with these of E1. However, the axioms themselves and their 
PB realization are completely different in E2 compared to E1. 
 
The first axiom that we introduce into the problem conditions assignment of resource 
instances to tasks on the skills that are required by the latter. More formally, let ,X kI be 
the number of instance of X available in time slot k. Now, for each resource X and time 
slot k, if ,X kI > 0, then, for each task iT , we have 
 

 

,
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,

( ) 1

,
X k

i

I
j

i kk
Q T j

X Q X
∈ =

→∪ ∩
Pre

 

This axiom is encoded  as a set of ( )iTPre  constraints. Namely, for each ( )iQ T∈ Pre , 
we have: 
  

 

,
( )

, , ,
1

,
X kI

j
X k i k X kk

j

I X Q X I
=

+ ≥∑  (1.6) 
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Informally, Eq. 1.6 encodes the requirement that if X does not have the skills essential to 
perform iT , then no instance of X can be assigned to iT . 
 
The subsequent two axioms correspond to the planning part of the problem, and in 
particular they embed the planning “frame axioms”. Informally, the first planning axiom 
states that “if the resource already have a certain skill, or currently one of this resource 
instances is involved in a task that provides this skill, then at the next time slot the 
resource will have this skill”.  
 
Formally, for each resource X, and for each time slot k, the axiom is as follows.  
If ,X kI > 0, then, for each skill Q, we have: 
 

 

,
( )
, 1

1 ( )

, ,
X k

i

I
j

i kk k
j T Q

X Q X X Q
+

= ∈

∨ →∪ ∪
Provide

 

 
where ( )QProvide stands for the set of all tasks T such that ( )Q T∈Provides . This 
axiom is encoded as: 
 

 

,
( )

, , ,1
( ) 1

, ,
X k

i

I
j

Q X i k Q Xk k
T Q j

X Q X Q Xβ β
+

∈ =

+ + ≥∑ ∑
Provide

(1.7) 

 
where  

 , , | ( ) | 1Q X X kI Qβ = ⋅ +Provide  
 
Otherwise, if ,X kI = 0, then, for each skill Q, we have: 
  

1
, ,

k k
X Q X Q

+
→  

 
encoded as: 
 

 1
, , 1

k k
X Q X Q

+
+ ≥  

 
The second planning axiom informally states that “if the resource don’t have a certain 
skill, and non of its instances is involved in a task that provides this skill, then at the next 
time slot the resource still will not have this skill”. This axiom accomplishes the first 
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planning axiom, and, formally, for each resource X, and for each time slot k, the axiom is 
as follows.  
 
If ,X kI > 0, then, for each skill Q, we have: 
 

 

,
( )
, 1

( ) 1

, ,
X k

i

I
j

i kk k
T Q j

X Q X X Q
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encoded as: 
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Otherwise, if ,X kI = 0, then, for each skill Q, we have: 
 

1
, ,

k k
X Q X Q

+
→  

 
encoded as 
 

1
, , 1

k k
X Q X Q

+
+ ≥  

 
 
Together with some additional technical details, this set of axioms (added to the current 
system of ATTEND’s pseudo-boolean constraints) provides necessary and sufficient 
condition for correct resource enabling with time abstraction within the CAMERA tool 
and the SNAP system. However, for the proper integration with the core ATTEND 
pseudo-boolean encoding, we extend our system with two additional sets of auxiliary 
constraints. These sets of constraints ensure that the solution to the PB problem will 
contain no redundant assignments of resource instances to tasks. This requirement is not 
necessary for the basic ATTEND/CAMERA encoding, but it is necessary for resource 
enabling with time abstraction. 
  
The first set of auxiliary constraints is specified as follows. For each task iT , we have: 
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,

,

( )
,

: 0 1

X k

X k

I
j

i i k i
X k I j

T X α
> =

−ℑ⋅ + ≤∑ ∑ ∑  (1.9) 

 
where ℑ  is the total number of elements in the internal summation, and 
 

 i i iα η δ= ⋅  
 
where iη  is the number of resources required by iT , and iδ  is the length of iT  (in time 
slots). 
 
The second set of auxiliary constraints accomplishes the first one by requiring: 
 

 

,

,

( )
,

: 0 1

0
X k

X k

I
j

i i k
X k I j

T X
> =

−ℑ⋅ + ≤∑ ∑ ∑  (1.10) 

 
where ℑ  is defined as above. 
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3.5 Complexity, Implementation, and Integration 
 
Taking advantage of the skills dynamically obtained by the pilots within the scheduled 
set of the tasks, especially in face of abstracting the time axis, turns to be extremely non-
trivial as it extends the general CAMERA/SNAP problem from the scheduling to a mixed 
scheduling & planning [SFJ00]. The conceptual difference between planning and 
scheduling can be formalized as follows: 
 

• In scheduling, all the interdependencies between the scheduled entities, and the 
properties of the resources are completely static. Therefore, assigning some tasks 
can only make other tasks more constrained. 

 
• In planning, the opposite is true, thus constrainedness of the problem is not 

monotonic anymore, and assigning tasks can make other tasks less/differently 
constrained. 

 
From the worst-case complexity point of view, planning is harder than scheduling 
(PSPACE-complete [Byl94] vs. NP-complete [GJ78]). By enhancing the core 
CAMERA/ATTEND problem with resource enabling we create hybrid 
planning/scheduling problem, thus careful exploiting of the problem structure should be 
done in order to avoid dramatic performance degradation. Since the enhanced problem is 
represented similarly to the original problem in pseudo-boolean encoding, the complexity 
blow-up can appear in the size of the problem description (i.e. number of constraints 
required to encode the problem). Below we show that this is not the case with the E2 
encoding. 
 
Table 3 summarizes the parameters of the problem, and Table 4 presents the description 
complexity of the (1) original problem, (2) extension, and (3) combination of (1) and (2). 
 

n # tasks 
m # resources 
k maximal # instances for a resource 
t # time slots (after abstraction) 
q # dynamically obtainable skills 

 
Table 3: Parameters of the Autonomous Logistic problems. 

 
 ATTEND E2 ATTEND + E2 

Variables O(nmkt) O(qmkt) O(mkt(n+q)) 
Constraints O(nmkt) O(qnmkt) O(qnmkt) 

 
Table 4: Description complexity of the encodings. 
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(a) 
 

 
 

(b) 
 
Figure 18: Snapshots of the CAMERA tool presenting results of negotiations without (a) and with (b) 

extended encoding E2. 
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Table 4 shows that, from ATTEND to ATTEND+E2 the size of the problem description 
grows linearly in the number of different dynamically obtainable skills. The evaluation of 
the extended encoding within the CAMERA tool shows that the real-life enhanced 
problems are solvable without exponential blow-up in time complexity. 
 
The extended encoding E2 has been completely implemented, integrated and tested 
within the CAMERA tool, and evaluated on the real-life problems of scheduling flight 
operations of a combat squadron and/or a set of squadrons. The results of the evaluation 
(demonstrated during the ANTs demo on June, 3, 2003) clearly showed that the extended 
encoding enhanced the qualitative capabilities of the CAMERA tool. For instance, 
consider Figure 18 that presents screen snapshots of the CAMERA tool. Both figures 
show the optimal schedules produced by a pseudo-boolean solver for the same flight 
operations scheduling problem on a squadron level. However, Figure 18(a) shows the 
resulting schedule for the plain ATTEND encoding of the problem, while Figure 18(b) 
shows the resulting schedule for the E2-enhanced encoding. In the first case, the optimal 
schedule left 3 (out of 17) tasks unscheduled, while in the second case all 19 tasks have 
been scheduled successfully. 
 
 
 
4. Identifying and Exploiting Critical Resources  
 
Our collaboration with ISI on extending CAMERA/ATTEND system (specifically, 
extending the pseudo-boolean encodings) inspired a novel research devoted to identifying 
and exploiting critical resources.  
 
Most interesting AI formalisms for reasoning, planning, and learning have been shown to 
be worst-case intractable. Such negative complexity results led to an extensive search for 
tractable subclasses of the general formalisms (e.g. see the work of our group on 
GridDCSP discussed in Section 2.5). Unfortunately, these tractable subclasses are often 
too restrictive for real-world applications, thus we saw the emergence of a more practical 
approach to computationally hard problems in AI, with the introduction of fast 
satisfiability solvers and fast constraint based reasoning methods. Somewhat surprisingly, 
on practical problem instances these methods scale well beyond what one might expect 
based on a formal complexity analysis. In fact, current state-of-the-art SAT solvers can 
handle problem instances, as they arise in scheduling, planning, and finite model-
checking, with up to a million variables and five million clauses [Chaff01]. The success 
of these methods appears to hinge on a combination of two factors: 
 
1. Practical combinatorial problem instances generally have a substantial amount of 

(hidden) tractable sub-structure, and  
 
2. New algorithmic techniques exploit such tractable structure, through, e.g., 

randomization and constraint learning. 
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These developments suggest that a standard worst-case complexity analysis does not 
capture well the true complexity of typical problem instances encountered in practical 
applications. Theoretical computer scientists have been well-aware of the limitations of 
worst-case complexity results and have explored alternatives, such as average-case 
complexity and smoothed analysis [ST01]. In average-case analysis, one studies the 
computational cost of solving problem instances drawn from a predefined problem 
distribution. Such an analysis clearly can provide valuable insights. However, the 
relatively basic distributions for which one can obtain average-complexity results appear 
to be quite far removed from the instance distributions one encounters in practice. In fact, 
formally defining the distribution of real-world problem instances is generally an open 
problem in itself. Smoothed analysis attempts to unify worst-case and average-case, but 
suffers from limited applicability: it works well on algorithms for problems defined over 
dense fields such as the simplex algorithm, but the applicability of smoothed analysis on 
discrete problem domains is unclear. 
 
In our work, we pursued an alternative approach of identifying special structural 
properties common to known problem instances and showing how clever algorithms can 
exploit such properties. Informal insights about what such special structure might be are 
currently already used in the design of, for example, branching and variable choice 
heuristics in combinatorial search methods. A common feature of these techniques is an 
understanding that different groups of variables in a problem encoding often play quite 
distinct roles. For example, at the highest level, one can distinguish between dependent 
and independent variables. The dependent or auxiliary variables are needed to obtain 
compact problem encodings but the true combinatorics arises from the independent 
variables; e.g., the independent variables in an encoding of a planning domain represent 
the various actions applicable in a given state of the world, whereas the dependent 
variables encode the consequences of selecting a particular action. Another powerful 
intuition in the design of search methods is that one wants to select variables that simplify 
the problem instance as much as possible when these variables are assigned values. This 
intuition leads to the common heuristic of branching on the most-constrained-variable 
first.  
 
These general insights have been incorporated in state-of-the-art constraint solvers, and 
their effectiveness has been demonstrated empirically on a significant number of 
benchmark problems. However, a more formal underpinning explaining the practical 
success of these strategies has been lacking. In our work [WGS03a,WGS03a], we 
introduced a formal framework directly inspired by these techniques and present rigorous 
complexity results that support their effectiveness.  
 

1. We formalized the notion of critical resources, introducing the notion of 
backdoor variables. This is a set of variables for which there is a value 
assignment such that the simplified problem can be solved by a poly-time 
algorithm, called the ``sub-solver''. The sub-solver captures any form of poly-time 
simplification procedure as used in current CSP solvers. We also consider the 
notion of a strong backdoor where any setting of the backdoor variables leads to a 
poly-time solvable sub-problem. The set of all problem variables forms a trivial 
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backdoor set, but many interesting practical problem instances possess much 
smaller backdoors and stronger backdoors. 

 
2. We studied backdoors in several practical problem instances, and identify 

backdoors that contain only a fraction of the total number of variables. For 
example, we showed that the CSP encoding of a standard benchmark logistic 
planning problem contains a backdoor with only 12 variables out of a total of 
nearly 7,000 variables. When given a set of backdoor variables of a problem 
instance, one can restrict the combinatorial search by branching only on the 
backdoor variables and thus search a drastically reduced space.  

 
3. In general, finding the set of backdoor variables for a problem instance is itself a 

computationally hard problem. The key contribution of our work is that we 
formally showed that backdoor variables still provide a concrete computational 
advantage, even when taking into account the cost of searching for such 
variables. We analyze three scenarios: 

 
a. A deterministic scenario with an exhaustive search of backdoor sets. We 

show that one obtains provably better search complexity when the 
backdoor contains up to a certain fraction of all variables.  

b. A randomized search technique, which in effect repeatedly guesses 
backdoor sets. We showed that this technique provably outperforms a 
deterministic search. 

c. Variable selection heuristic, which provides guidance towards the 
backdoor set. This strategy can yet further reduce the search space.  

 
 

B(n) deterministic randomized heuristic 
/n k  small exp(n) smaller exp(n) tiny exp(n) 

( )log( )O n  (log( ))

log( )

O n
n

n

 
  
 

 
(log( ))

log( )

O n
n

n
 
 
 

 
 

poly(n) 

(1)O  poly(n) poly(n) poly(n) 
 

Table 5: Time bounds for solving CSPs in the various scenarios considered in this work. 

 
Table 5 gives a high-level summary of the results, showing time bounds for solving CSPs 
in the various scenarios considered in this work. B(n) is an upper bound on the size of the 
smallest backdoor, where n is the number of variables in the problem. k is a fixed 
constant. Our empirical results suggest that for practical instances the backdoor is often a 
relatively small fraction of n, e.g., n/100, or even of size log(n). By exploiting restart 
strategies, we can identify a polynomially solvable case when the backdoor contains at 
most log(N) variables. We believe that this final scenario is closest to the behavior of 
current effective constraint solvers. Our formal analysis also suggests several novel 
algorithmic strategies that warrant further empirical exploration.  



 38

5. Conclusions 
 
The work of our group in the ANTS program has been devoted to connecting frameworks 
for multi-agent negotiation-based systems with the research on analytical and empirical 
computational complexity. Our general goal was to improve the expressiveness and 
scalability of complex distributed systems by exploiting computational hardness 
awareness in both the design and operation of these systems. In particular, our goal was 
to study the impact of problem structure on the computational complexity of the problem, 
and to exploit this connection in both problem modeling and solving. 
 
Considering our work in both ANTS Sensor Networks and Autonomic Logistics 
domains, we believe that our goals were successfully achieved. On the one hand, our 
formal and empirical results were motivated and shown to be directly applicable to the 
benchmark domains of the program. For instance, our formal modeling techniques 
improved the robustness and scalability of the prototype multi-agent systems for 
autonomic logistics, and our insights on “initiated message delays” affected the 
negotiation protocols developed by other contractors in the program. On the other hand, 
our domain specific results provided us with a platform for further generalization, leading 
to several generic research contributions that have been already used in the wide 
scientific community. 
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